
Thus, it can be concluded that with a confidence probability of P = 0.95, the desired 
value of deflection angle from the gas-dynamic prism for a launch coordinate x 0 = 2.4 mm 
deviates from the measured average value ~ = 2.95 ~ by an amount no greater than 0.078 ~ = 
4.7' The relative measurement error was 2.5%. 

CONCLUSIONS 

The theoretical and experimental studies conducted on the gas-dynamic prism show that 
it can be used more effectively than traditional aerooptical elements for deflecting a 
light beam at large angles. However, the degradation in the beam divergence of the light 
in the direction transverse to the axis of the nozzle requires one to perform some compen- 
sating measures to correct it. In the latter case, in all probability, the most suitable 
approach is to use a gas-dynamic system for beam deflection in combination with well-known 
thermal concentration and diffusion compensation methods in the transverse direction; this 
allows for the fact that the perturbation of the angles introduced by the prism in this 
direction are small. 
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EXISTENCE OF STATIONARY WAVES OF RADIATION COOLING 

G. S. Romanov and D. E. Skoromnik UDC 533.9 

The solution of the system of equations of gas dynamics and radiation trans- 
fer is analyzed and it is shown that a Zel'dovich-Raizer stationary wave of 
radiation cooling does not exist in a hot gas. 

The radiation cooling of a hot volume of air was studied in [i, 2]. It was shown that 
because of the extremely sharp temperature dependence of the optical properties of air 
such cooling must occur in the form of a temperature step propagating in the hot air - 
a so-called wave of cooling (WC) [3]. Cooling by radiation in this manner drops the air 
temperature from 10s-106 K and higher to ~104 K within a short time. Assuming that the 
velocity of the wave of cooling is low compared with the velocity of sound, the authors 
neglected, owing to its smallness, the pressure jump on the front of the WC and the air 
motion arising, and instead of considering the complete system of equations of gas dynamics 
and radiation transfer, which describe this process, they limited their analysis to the 
energy equation and the radiation transfer equation. After integrating these equations, 
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Fig. I. Schematic diagram of the pro- 
files of the temperature, pressure, 
and density in the wave of cooling. 

under the assumption that the WC is quasi-stationary, Zel'dovich et al. obtained in [i, 2] 
an analytic expression for the temperature profile on the front of the WC and they found 
the radiation flux from the wavefront and the propagation velocity of the flux. 

It is obvious, however, that since the density of the cold gas is higher than that 
of the hot gas, such cooling gives rise to motion of matter from the periphery toward the 
center, i.e., a gas-dynamic flow of air will arise. For this reason, it is more correct 
to study the complete system of equations of gas dynamics and radiation transfer. 

The aim of this work is to solve the complete system of equations for this problem 
under the assumption that the wave of cooling is stationary. From analysis of the final 
states, which are the solution of this complete system of equations, it can then be con- 
cluded whether or not the assumptions made in [i, 2] are correct and also the character 
of the stationary wave of cooling can be judged. 

We study a one-dimensional stationary WC, propagating in hot air with velocity D. 
We shall employ the result of [i] that the radiation flux S 2 flowing out of the hot region 
is generated in the trough of the wave and is equal to approximately oT2 4, where T 2 ~ 10 4 K 
is the transparency temperature of air. We shall also assume that absorption in the region 
not too far behind the front of the WC can be neglected. Under these conditions, the stand- 
ard integrals of the equations of gas dynamics in the system of coordinates moving with 
the velocity of the front of the WC exist (Fig. i): 

91D = p2u = C1, ( 1 ) 

pl Dz -}- P~. = 9~u z + P ~  = C1C~, (2) 
D ~ u z $2 

WI + = W~ § § -- 
2 2 p1D' ( 3 ) 

The indices 1 and 2 denote quantities in some sections (i) and (2) (see Fig. i) ahead of 
and behind the WC front, respectively. 

We assume that air is an ideal gas with heat-capacity ratio y = cp/c V. In the range 
of air temperatures studied 7 ~ 1.15-1.4 [3]. To the system of equations (1)-(3) we add 
the equation of state of a perfect gas 

P=~p~,  (4) 

where A = R/~I is the gas constant, calculated per ! g, as well as the thermodynamic relar 
tion 

W =  epT -- ~ P 

y ~ l  P 

It follows from Eqs. (i) and (2) that in the process of compression in the absence 
of viscosity the change in the state of an air particle as it passes through the front 
of the WC should occur along the straight line P = PI + pID2( 1 - X), where X = Pl/P = V/VI 
in the (P, V) plane. 

We shall find the relation between the initial and final states of the gas in the 
variables (P, V), for which with the help of Eqs. (i), (2), (4), and (5) we eliminate from 
Eq. (3) W I, W2, u, and D. We also take into account the fact that S 2 ~ oT2 4 As a result 
we obtain an expression analogous to the equation of a shock adiabat: 

(5) 
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In addition to Eq. (6), the relation 

PIV1 P~V2 
T1 T, 

should hold at the point of the final state in the (P, V) diagram. 

It is convenient to write the expressions (6) and (7) in the variables Y = P2/PI and 
X = V=/V 1. This gives 

(6) 

(7) 

2oo 5,,35v ,_x 
-- I ?-- I -I- X - i - - - ~ - - r ,  v,  Y-------T- ( 8 )  

x r  ~ - -  

T~ 10~ 

T1 TI" (9) 

Thus the final states of air after the passage of the WC are represented in the (X, Y) 
plane by the point of intersection of the curves (8) and (9) with the initial parameters 
PI, VI. It is important to note that since the final temperature T 2 is determined by the 
optical properties of air and is known beforehand, the system of equations (8) and (9) 
with the initial values Pz, VI has a unique solution, i.e., a point in the (X, Y) diagram. 
For greater clarity we shall represent the set of points of final states with different 
initial conditions by a curve with the parameter Pl, for which we substitute Eq. (9) into 
Eq. (8) and introduce the dimensionless pressure P'z = PI/I06. We also set ~ = 1.4. The 
final equation that expresses the set of points of final states in the (X, Y) plane as a 
function of the initial pressure P'I has the form 

6,7 ~ Y--1  
p; -- ( 6 - -  X - - 6 X Y - - ~  Y) 

X Y ( 1  - -X )  (10) 

We f i n d  the  o the r  i n i t i a l  parameter  V 1 from Eq. (9) wi th  the  va lues  of (X, Y) of  the  
point of the final state. 

Figure 2 shows curves of the final states (i0) with the initial pressures Pz = i, 2, 
and i0 arm. Since we are investigating a wave of cooling, the condition T 2 < T I or XY < 1 
in the (X, Y) variables should hold for the final states. These points lie beneath the 
curve 5 (Fig. 2). From Fig. 1 one can see that final states where PI = P2 (Y = i) do not 
exist. As is well known, a finite jump in the pressure on the wavefront in a nonviscous 
gas generates a wave which propagates through the undisturbed gas with supersonic velocity 
D > c I. This means that the points lying below the straight line 6 (Fig. 2), satisfying 
the condition D = cz, cannot be realized. Thus the points of the final states, satisfying 
the conditions listed above, can be located only in the region below the curve 5 and above 
the straight line 6. 

We shall now determine whether or not a solution of the radiation transfer equation, 
which admits such a process, exists. For this, it is convenient to employ the phase-plane 
method [4]. For a stationary one-dimensional process the energy equation can be written 
in the form [5] 

P" -d--x--x , W +  = -d~x ' (11) 

dS = 4~ • 
dx o --~-_. l~,dp,-- B~ d~, 

B , =  2h~3 exp - - I  
c--Y- ~ (12) 

As a simplification, instead of the exact radiation transfer equation we shall study 
the diffusion approximation of this equation, and we shall take into account the spectral 
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Fig. 2. Curves of the final states with Pz = i, 2, and i0 atm (i, 2, and 3, 
respectively), the Hugoniot adiabat for a perfect gas with y = 1.4 (4), a 
plot of the function XY = 1 (5), a straight line whose slope corresponds to 
the velocity of sound c z in a hot gas (6), and one of the possible straight 
lines connecting the initial zero and the final state B of a particle of air 
(7). 
Fig. 3. Picture of the integral curves for the process depicted by the 
straight line 7 in Fig. 2; M I = 1.2. 

composition of the radiation by introducing an appropriately spectrum-averaged mean-free 
path length ~ of the radiation [i]: 

lc dU S - -  
3 dx (13) 

As the independent variable we introduce the optical thickness T: dz = Kdx. In the case 
of an ideal gas it is convenient to introduce the following normalization: v = u/C 2 and m = 
(~A4/2oC2S)I(x, p). In these variables, after integrating over the spectrum. Eqs. (Ii) 
and (13) assume the following form [5]: 

_ _  U2 ) 
d Y v - -  = m--Ot '  (14) 

b dT ? + 1  2 , 

where 

I dam 
- - -  = ~ - - m ,  ( 1 5 )  

3 d'~ 2 

( b - -  O 1 A 4  (?  + 1) 1 + ; O : v (1 - -  v) .  
4aD 5 ( ~ - -  1) 

Replacing in Eq. (15) the right-hand side by the left-hand side of Eq. (14) and in- 
tegrating once over T, we obtain the first integral: 

1 d.~ ( yv v 2 ) 
--~-- - - ~  4- C = b 

~ + 1  2 

The i n t e g r a t i o n  c o n s t a n t  C c a n  be f o u n d  f r o m  t h e  b o u n d a r y  c o n d i t i o n s  a h e a d  o f  t h e  f r o n t  
o f  t h e  WC 

T = - - o o ;  S I = 0 ;  UI=UIe=4~T---~- ~ , 
C 

or behind the front of the WC 

(16) 

'~ ~ 0; S 2 ~_, ~T~; U2 : O2e = 4o'T~ . 
C 
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We note that for the point 2 behind the front of the WC we took the point where S 2 ~ 
oT2 4, U 2 = U2e. In [2] it is shown that such a point exists and it is convenient to take 
this point as the bottom edge of the WC. 

Converting from differentiation with respect to T to differentiation with respect 
to v, we obtain the equation 

dw 3bib( ?v v 2 ) ] v~--v 
- - =  - c  - -  (17) dv 7 + 1 2 w -- O ~ ' 

where v s : u + i). 

Taking into account the boundary conditions we find the following expressions for 
the integration constant C: 

5' + 1 2 ) := b S~A'~ 
�9 7 + 1 2 4~C~ 

Substituting the expressions for C at the points 1 and 2 in Eq. 
final differential equations of the problem in the phase plane (v, w) 
the initial point 

clw 3b 2 (vs--v)(vl--v) (v~ + v 2 ~  ) 
dv 2 w- -O~ 7 +  1 ( 1 9 )  

( 1 8 )  

( 1 7 ) ,  we o b t a i n  t h e  
in the vicinity of 

and the final point 

dw_ 3b~[ ( 2, ) S2A~ I v~--v 
do- - -2" ( v - -  v~) v - -  v2 

V + 1 2,~bC~ w - -  O~ ( 2 0 )  

Figure 3 shows a picture of the integral curves of Eq. (17) in the vicinities of the 
points of the initial and final states. The point (vl, w I) for Eq. (19) is a saddle-point 
singularity. The directions of the separatrices leaving this point are given by the formula 
[5] 

! 

= a ~ [a 2 + 3b 2 (vs - -  vl) ~12, 
I 

a = 2v~ (I - vl)~ (I - 2vi) 

The point (v=, w 2) is not a singular point of Eq. (20). The radiation energy density 
w must be a continuous function of x and, therefore, of v also. It is obvious from the 
adiabats of the final states that at first shock, compression, and therefore, some heating 
of the gas occur behind the front of the WC. In Fig. 3 this means that at first the state 
of a particle of air should vary along a separatrix having a negative slope angle in the 
direction i'. Then it abruptly assumes some intermediate value with some overcompression 
v'a(v' 2 < v 2) and only after this does it continuously expand along the integral curve 
up to the final state v 2. Only such a sequence of processes satisfies the solution of 
Eq. (20), as follows from the form of the integral curves in the phase plane. However, 
analysis of the adiabat of final states does not admit even this, single possible method 
of cooling, satisfying the initial formulation of the problem. 

Indeed, one can see from Fig. 2 that no intermediate overcompressed states v' 2 belong 
to the adiabat of final states and therefore they do not exist. The state of a particle 
of air changes abruptly from the point 0 into the point A. Then, as a result of the sub- 
sequent "additional compression" the particle cools to the temperature T 2 at the point 
B. From here, we can draw the following conclusion. Analysis of the solutions of the 
complete system of differential equations of gas dynamics and radiation transfer shows 
that the assumption that the cooling of the hot volume of air by means of a stationary 
radiation wave of cooling is incorrect. The indicated system of equations does not have 
a solution that admits such a method of cooling. For this reason, the approach proposed 
by Zel'dovich and Raizer in [i, 2], based on the fact that the complete system can be re- 
placed by the equations of energy and radiation transfer because of the smallness of the 
gas-dynamic airflow arising, cannot be used to study the phenomena of radiation cooling. 
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What we have said, however, does not answer the question of whether or not there exists 
a nonstationary WC. For this it is necessary to solve the complete system of nonstationary 
partial differential equations. Because of the great complexity of this system, this can 
only be done by numerical methods. Therefore this physical phenomenon requires further 
investigation. 

NOTATION 

Here D is the velocity of a stationary wave of cooling; Pi, Pi, Ti, Wi, Vi (i = i, 2) 
are the density, pressure, temperature, specific enthalpy, and specific volume, respectively; 
u is the velocity of the air flowing out of the front of the WC in the coordinate system 
fixed in the front; C l and C 2 are integrals of the equations of conservation of mass and 
momentum; S is the radiation flux; o is the Stefan-Boltzmann constant; R is the universal 
gas constant; DI is the molar mass of air; cp and c V are the heat capacity of air at con- 
stant pressure and constant volume; c I is the velocity of sound in the hot region; K v is 
the absorption coefficient of air at the frequency v; I v is the intensity of the emission 
at the frequency v; D is the cosine of the angle between the characteristic and the Ox-axis; 
< is the frequency-averaged absorption coefficient of air; I is the frequency-averaged 
radiation intensity; I is the average mean free path of the radiation; U is the average 
radiation density; Uei is the equilibrium radiation density; c is the velocity of light in 
vacuum; v is the dimensionless velocity; w is the dimensionless radiation density; 8 is the 
dimensionless temperature; and, M l = D/c I is the Mach number. 
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